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Abstract: Understanding the relationship between the size of mangrove structural features and 

the optimum image pixel size is essential to support effective mapping activities in mangrove 

environments. This study developed a method to estimate the optimum image pixel size for 

accurately mapping mangrove features (canopy types and features (gaps, tree crown), 

community, and cover types) and tested the applicability of the results. Semi-variograms were 

used to characterize the spatial structure of mangrove vegetation by estimating the size of 

dominant image features in WorldView-2 imagery resampled over a range of pixel sizes at 

several mangrove areas in Moreton Bay, Australia. The results show that semi-variograms 

detected the variations in the structural properties of mangroves in the study area and its 

forms were controlled by the image pixel size, the spectral-band used, and the spatial 

characteristics of the scene object, e.g., tree or gap. This information was synthesized to 

derive the optimum image pixel size for mapping mangrove structural and compositional 

features at specific spatial scales. Interpretation of semi-variograms combined with field 

data and visual image interpretation confirms that certain vegetation structural features are 

detectable at specific scales and can be optimally detected using a specific image pixel 

size. The analysis results provide a basis for multi-scale mangrove mapping using high 

spatial resolution image datasets. 
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1. Introduction 

Remote sensing has been used extensively to map and monitor mangrove environments over the past 

two decades. It offers some key advantages for mangrove studies, including indirect access to mangrove 

habitats that are usually hard to access [1,2], extrapolation of observation results at specific sample sites 

over large areas [3], and delivery of data at specific spatial and temporal scales [4]. Recent developments 

in remote sensing and image processing allow us to explore various types of image datasets, as well as 

types of mapping techniques, to map mangroves [3,5]. However, there is a need to match the scale of the 

analysis to the scale of the phenomenon under investigation, as environmental inferences are  

scale-dependent [6]. Mapping mangroves at specific spatial scales will help scientists to focus their 

research on the ecological questions that are appropriate to each level of ecological detail [7], and 

managers to focus on the conservation activities at ecologically relevant spatial and temporal scales [8]. 

From an ecological perspective, mangrove ecosystems, like other vegetated ecosystems, can be 

placed within a hierarchical structure [9]. The central concept of this theory focuses on the differences 

in structure and process rate between hierarchical levels. Based on these differences, ecosystems are 

viewed as being stratified into discrete levels of interacting subsystems, with attributes and processes 

occurring at specific spatial and temporal scales [7,10–12]. Remote sensing is a tool able to deliver 

information on mangrove characteristics at specific spatial and temporal scales. However, the spatial 

configuration of mangroves, as measured in an airborne or satellite image, is dictated by spatial 

structures of mangroves in the field, interacting with imaging sensor characteristics. In order to use 

satellite or airborne image data to extract information at specific scales or features for mangroves, it is 

essential to understand the control of mangrove spatial structures on their measurement in an image. 

This raises the question, ―what mangrove features are dominant and able to be mapped at specific 

levels of image resolution, as controlled by pixel size?‖ Studies linking the spatial structure of 

mangroves and the image spatial-resolution are limited. 

The selection of scale or an appropriate spatial resolution is an important factor that contributes to 

the successful application of remote sensing. It depends on several factors, including the information to 

be extracted from the ground scene, the analysis method to be used to extract the information, the 

spatial structure of features within the image scene [13], the type of environment being investigated 

and other relevant constraints (i.e., cost and time) [14]. The scale effect is regarded as one of the most 

important problems in remote sensing studies [15–17]. The ―scale‖ represents the window of 

perception [16], the ability of observation, and reflects the limitation of knowledge through which a 

phenomenon may be viewed or perceived [15]. Changing the scale of data collection and analysis 

impacts the measurements and conclusions able to be drawn for an environment and image data set 

combination. Consequently, selecting an appropriate or optimal spatial resolution requires information 

on the spatial characteristics of features within the scene under investigation. 
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Scientists have developed several methods to select the optimal spatial scale for remote sensing 

applications, which are tied to selection of pixel sizes and spectral bands, primarily for use in the per-pixel 

classification. The most widely adopted method is to examine the spatial autocorrelation of the image 

scene through the analyses of semi-variograms. The semi-variogram is a tool to link models of the 

ground scene to spatial variation in images [18] and is able to detect the most dominant scale(s) of 

variation in images [19]. In remote sensing studies, it enables the optimal pixel size for feature mapping 

in different environments from image data to be specified, for example, in forests [20–23], tropical 

savannahs [24,25], grasslands [26,27], and wetlands [28]. Semi-variograms can be used to identify the 

domains of scale where certain features reside [21,24,29], which in turn will provide support in 

selecting the most appropriate image spatial resolution for a specific mapping purpose. 

The current status of remotely sensed data (i.e., various types and resolutions) enables multi-scale 

information to be derived for mapping and monitoring mangroves across spatial-ecological hierarchies. 

However, as an increasing number of remotely-sensed data sets with different pixel sizes become 

available, selecting the most appropriate spatial resolution becomes more difficult. In order to select an 

appropriate spatial resolution for a specific application, the spatial characteristics of the scene should 

be examined [30]. The main objectives of this study were to develop methods to estimate the optimum 

pixel size for mapping mangrove composition and structural properties, and test the applicability of the 

methods. The examination of spatial characteristics of mangroves was conducted used experimental 

semi-variograms derived from WorldView-2 images, in Moreton Bay, Australia, to determine the 

spatial scales of the mangrove features. This information may provide guidance for selecting the most 

appropriate image spatial resolution for mapping certain mangrove features, and answering the 

question of what mangrove feature can be mapped from a given spatial resolution, and vice versa. 

2. Data and Methods 

2.1. Study Site 

This research was carried out in mangrove areas at the mouth of the Brisbane River, Northern 

Moreton Bay, Southeast Queensland, Australia (between 153°3'41"−153°11'20"E and 

27°19'41"−27°25'31"S), including Whyte and Fisherman Islands, and the Boondall wetlands (Figure 1). 

This lowland area is classified as sub-tropical, experiencing warm climate (average daily maximum: 

28.9 °C, minimum: 20.0 °C) with moderate to high rainfall (mean annual rainfall: 1,267.7 mm). 

The highest rainfall events are associated with monsoonal depression during the summer season 

(December to February) [31]. Moreton Bay is one of Australia’s premier wetlands and a Ramsar 

Convention listed wetland, with extensive stands of mangroves [32]. Avicennia marina is the dominant 

mangrove species and comprises approximately 75% of the entire mangrove community within this 

region [33]. However, other species, such as Rhizophora stylosa, Ceriops australis, Bruguiera 

gymnorhiza, Excoecaria agallocha, and Aegiceras corniculatum, are occasionally present [34].  

There are four different mangrove zonations from the saltmarsh area to the coastline (Figure 1c); 

starting with open scrub formation (S3), followed by low-closed forest with single-stem (I4a) and 

mixed-stem (I4b) tree, and finally closed forest (M4), according to the Specht et al. [35] classification. 

This structural zonation is consistent for Whyte Island and Fisherman Island mangroves with some 



Remote Sens. 2014, 6 987 

 

variations in formation width (Figure 1). The zonation is less noticeable for Boondall wetlands, 

although it has similar vegetation formation gradation from saltmarsh to the river water. The rationale 

behind selecting these sites was that: (1) they are protected and well-preserved with minimum 

disturbances, making them ideal for developing and testing mapping approaches for this research; 

(2) there are distinct mangrove zonation and structural differences from the seaward to the landward 

locations; and (3) there are multi-resolution image data sets available for these sites.  

Figure 1. (a) Study sites: Mangroves at Moreton Bay area, Brisbane, Australia; (b) An 

example of field survey transect, orange circles represent location of 10 m × 10 m quadrats, 

and (c) Transects of image pixels running parallel to the coastline used to derive the  

semi-variograms shown for Whyte Island. 

 

2.2. Image and Field Datasets 

The image data used as a basis for mangrove spatial structure examination was a WorldView-2 image 

of the Brisbane River mouth captured on 14 April 2011 (Figure 1 and Table 1). The image was obtained 

in an ortho-rectified format, corrected at Level 3X (LV3X); with root-mean-square error (RMSE) 2D of 

0.00 [36]. Radiometric correction was applied to the image to convert the pixel values from digital 

number to top-of-atmosphere spectral radiance (W/cm
2
sr.nm) using the values provided by Updike and 

Comp [37]. The atmospheric correction converting top-of-atmosphere spectral radiance to at surface 

reflectance was performed using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) 

Atmospheric Correction Model in Environment for Visualizing Images (ENVI) 4.8, with the atmospheric 

visibility parameter estimated from the moderate-resolution imaging spectroradiometer (MODIS) 

aerosol product [38]. A very high-spatial resolution aerial photograph (Table 1) captured on 14 January 

2011 (www.nearmap.com) was used to measure the dimension (i.e., spatial size) of mangrove features 

(a) (b) 

(c) 
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investigated (foliage clumping, canopy gaps, tree crown, vegetation formation or community, and 

vegetation cover type) and as a reference to analyze the image spatial structure. 

Table 1. Characteristics of image data used in this study. 

Image Type WorldView-2 Aerial Photograph 

Acquisition date 14 April 2011 14 January 2011 

Acquisition time 00:10:47.59 UTC (10:10:47.59 AEST)  

Product type and level Ortho, LV3X Ortho-rectified 

Geometric attributes UTM 56 J in meters GCS WGS 1984 

Radiometric attributes 16 bits per-pixel  

Spectral attributes 

Coastal (400–450 nm) 

Blue (450–510 nm) 

Green (510–580 nm) 

Yellow (585–625 nm) 

Red (630–690 nm) 

Red edge (705–745 nm) 

NIR1 (770–895 nm) 

NIR2 (860–1040 nm) 

PAN (450–800 nm) 

True color image 

(red, green, blue) 

Pixel size Multispectral 2 m, panchromatic 0.5 m 7.5 cm 

Note: AEST—Australian Eastern Standard Time. 

The fieldwork was conducted during April 2012, to measure selected mangrove vegetation structure 

and composition variables in the study area. Fifteen representative 200 to 300 m long field transects were 

established perpendicular to the shoreline (Figure 1a,b). On each transect, plots of 10 m × 10 m quadrats 

were sampled along the transect lines as a frame to record mangrove zonation pattern and measure 

mangrove biophysical properties in the field, including transect and plot positions, vegetation structural 

information (canopy height and vegetation formation type), dominant species, and field photos.  

Table 2. Mangrove vegetation structural characteristics of Moreton Bay mangroves, sampled 

at three sites, derived from field data sampled across the main vegetation zonation boundaries. 

Distance  

from Coastline 
Whyte Island Fisherman Island Boondall Wetlands 

175 m 

(S3) 

Open scrub, 1–3 m height, multi 

stem, gaps > canopy cover, 

Sarcocornia quinqueflora, water or 

soil understory, low density canopy 

cover, dominant species Avicennia 

marina. 

Open scrub, 2.5–4 m height, single or 

multi stem, gaps < canopy cover, 

Sarcocornia quinqueflora, water or 

soil understory, low density canopy 

cover, dominant species Avicennia 

marina. 

Open scrub, 1.5–5 m height, single or 

multi stem, gaps > canopy cover, 

Sarcocornia quinqueflora, water or soil 

understory, medium density canopy 

cover, dominant species Avicennia 

marina. 

125 m 

(I4a) 

Low-closed forest1, 4–7 m height, 

single or multi stem, gaps < canopy 

cover, Avicennia marina seedling or 

Aegiceras corniculatum understory, 

medium density canopy cover, 

dominant species Avicennia marina. 

Low-closed forest1, 4–9 m height, 

single stem, gaps < canopy cover, 

Avicennia marina seedling or 

Aegiceras corniculatum understory, 

high density canopy cover, 

dominant species Avicennia marina. 

Low-closed forest1, 5–7.5 m height, 

single stem, gaps < canopy cover, 

Avicennia marina seedling or 

Aegiceras corniculatum understory, 

high density canopy cover,dominant 

species Avicennia marina. 
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Table 2. Cont. 

Distance  

from Coastline 
Whyte Island Fisherman Island Boondall Wetlands 

75 m 

(I4b) 

Low-closed forest2, 6–8 m height, 

single stem,  

gaps < canopy cover, clear 

understory, very high density canopy 

cover, dominant species Avicennia 

marina with some individual 

Rhizophora stylosa. 

Low-closed forest2, 8–10 m height, 

single stem,  

gaps < canopy cover, clear 

understory, high density canopy 

cover, dominant species Avicennia 

marina with some individual 

Rhizophora stylosa and patches of 

Ceriop tagal. 

Low-closed forest2, 7–9 m height, 

single stem,  

gaps < canopy cover, clear or 

Avicennia marina seedling 

understory, high density canopy 

cover, dominant species Avicennia 

marina with some individual 

Rhizophora stylosa. 

25 m 

(M4) 

Closed forest, 10–12 m height, single 

or multi stem,  

gaps < canopy cover, clear 

understory, high density canopy 

cover, dominant species Avicennia 

marina trees. 

Closed forest, 8–11 m height, single 

or multi stem,  

gaps < canopy cover, clear 

understory, high density canopy 

cover, dominant species Avicennia 

marina trees. 

Closed forest, 8–10.5 m height, 

single or multi stem, 

 gaps < canopy cover, clear 

understory, high density canopy 

cover, dominant species Avicennia 

marina trees with some patches of 

Ceriop tagal. 

Positions of each sampling plot (at the start and the end of the plot) were measured using Garmin 

eTrex Legend H hand-held GPS, using an average reading time for each point between 400 and 600 s 

(with the positional accuracy of 4–6 m) to maximize the GPS signal inside the mangrove canopy. 

Additional control points identifiable from the field and image were used to ensure the precise overlay 

of the transects to the image. Canopy height was measured every 5 m along the transect using a 

TruPulse 360 laser rangefinder. The mangrove structural formation on each plot was determined using 

Australian vegetation structural formations table [35] and the dominant species information were 

identified using Australian mangrove identification wheel [34]. The structural characteristics measured 

along the transect in each of three mangrove field sample sites are presented in Table 2. 

2.3. Methods 

Figure 2 summarizes the methods used to measure the spatial structure of mangrove features in the 

study area. The work flow is divided into three steps. Step 1 is necessary to prepare the data and create a 

series of images with different pixel sizes as a basis for multi-scale level examination of mangrove 

spatial structure. Step 2 deals with measuring and analyzing the spatial structure of mangrove vegetation 

from the pre-processed images using semi-variograms. Step 3 applies and evaluates the results from 

step 2 into image datasets for mapping mangrove features using object-based image analysis (OBIA). 

2.3.1. Image Dataset Preparation 

Pan-sharpening algorithms were applied to the atmospherically corrected images to obtain a higher 

spatial resolution image for input to the spatial structure analysis. Six different pan-sharpening 

algorithms (principal component, multiplicative, Brovey, wavelet, Gram-Schmidt, and color 

normalized) from commercial image processing software were investigated to determine their quality 

in terms of preserving pixel values of the atmospherically corrected multi-spectral data. Several image 
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quality metrics were applied, including root mean square error, standard deviation, relative shift of the 

mean, and coefficient of correlation [39,40]. The overall evaluation of the image quality metrics shows 

that the Gram-Schmidt pan-sharpening algorithm produced the pixel values closest to the original 

multi-spectral data, and therefore this method was used to produce a sharpened image for spatial 

structure analysis. 

Figure 2. Overview of the methods.  

 

To enable analysis of the spatial structure of mangroves at multiple specific-scales and to examine 

the effect of different pixel sizes on the derived information, the Gram-Schmidt pan-sharpened images 

(0.5 m pixels) were resampled to a pixel size of 1 m, and the original multi-spectral image (2 m pixels) 

were resampled to 4, 8, and 10 m pixel sizes using an averaging algorithm. According to Bian and 

Butler [41], the pixel aggregation method is more appropriate for processing remote sensing images 

because a pixel value is assumed to be the averaged value over the associated area on the ground. This 

process produced a total of six different image pixel sizes (0.5, 1, 2, 4, 8, and 10 m). The reasons for 

selecting these pixel sizes were to detect specific details of mangrove features, and an approximation 

of the currently available image datasets. All of processing above was done using ENVI 4.8 image 

processing software. 

2.3.2. Measurement of Mangrove Spatial Structure through Semi-Variogram 

The semi-variogram (γ) is a spatial statistical graph of semi-variance, which is the measured 

difference in variance value between pairs of regionalized variable samples in relation to their spatial 

separation with a given relative orientation. It provides a concise and unbiased description of the 

scale(s) and pattern(s) of spatial variability, in both remotely-sensed data and field data [42,43]. 

If applied to remotely-sensed data; the semi-variogram is used to examine the relation between the 

digital number (DN) or pixel value of n pixel pairs at a distance h (the lag distance) apart. The equation 

for semi-variance γ(h) is: 

γ( )   
 

  
                  (1) 

where γ(h) represents half of the mathematical expectation of the squared differences of pixel pair 

values at a distance, h, and DN refers to spectral reflectance or vegetation index in this study. Hence, 

for image spectral data, γ(h) estimates the variability of DNs, as a function of spatial separation.  

WorldView-2 image 

Radiometric & atmospheric correction 

Image pan-sharpening 

Image resampling 

(0.5, 1, 2, 4, 8, 10m pixel sizes) 

Pixel value extraction along 

transects 

Semi-variogram calculations 

Analysis of the semi-variograms 

Optimum pixel size scheme 

Application of the scheme 

to an image dataset using 

OBIA approach 

Evaluation of the optimum 

pixel size scheme 

Segmentation and 

classification 

STEP 1 STEP 2 STEP 3 
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In creating semi-variograms, the distance of each lag determines the number of the pixel pairs in the 

transect sample. By increasing the lag distance, the pixel pairs on a transect are fewer; which in turn 

decreases the confidence level of the analysis [42]. To alleviate this problem, Webster [44] suggested 

to use lag distances shorter than a fifth of the transect length for the semi-variogram interpretation. 

The analysis of semi-variograms requires two assumptions: spatial stationarity, which assumes that the 

correlation between variables is a function of the lag distance between pixels, not because of the 

variation in spatial position of the transect [21,27,45]; and ergodicity, which assumes that spatial 

statistics taken over the area of the image as a whole are unbiased estimates of those parameters [46]. 

Both of these assumptions are appropriate in digital remotely-sensed images; first, because of the variation 

in scan angle and terrain effects are minimal and, hence, regarded as stationary in increments, and second, 

the reflectance surface is considered stochastic [46]. However, according to Curran [42], all image bands 

and directions should be examined in order to define the minimum range of the semi-variogram and 

therefore the minimum spatial resolution of the feature element. There are two sampling methods used in 

creating semi-variograms [29,47]; (1) transect method, where the semi-variogram is calculated along a 

single, representative row or column of pixels from each selected image, and (2) matrix method, where the  

semi-variogram is calculated for all the row and column pixels in each image. For canopy structure 

analysis, the transect sampling method provides more detailed sill variation and periodicity, and also 

smaller range distance compare to the matrix method [29]. It was as a result of averaging the  

semi-variograms for all row and column directions in matrix method. Therefore, the first sampling 

method was adopted for this study in order to depict structural information inherent within each of the 

mangrove zones. 

The approach used for examining spatial structure in this study was similar to the one conducted by 

Cohen et al. [29], and Johansen and Phinn [24]. We used several transects created over the image data 

sets (original and resampled WorldView-2 images) to generate semi-variograms. All eight bands of the 

WorldView-2 image (Table 1), and the derived normalized difference vegetation index (NDVI) images 

were used to generate the semi-variograms. According to image visual inspection and semi-variogram 

evaluation [48], four bands (green, red-edge, near infrared1 (NIR1), NDVI) were sensitive to 

mangrove vegetation variations and had the least redundant information among other bands. Therefore 

only these bands were used for further analysis of the semi-variograms. The semi-variogram transects 

were located parallel to the coastline to represent the homogenous areas within each mangrove zone 

(i.e., areas assumed to have similar vegetation structural properties). In this study, 12 representative 

transects located parallel to the coastline at a distance of 25 m, 75 m, 125 m, and 175 m from the 

coastline were used to develop semi-variograms within zone structures (Figure 1c). The distance of the 

transects line varied between 500 and 1,000 m, depending on the length of the mangrove zonation. 

All transects were evaluated at six different pixel sizes (0.5, 1, 2, 4, 8, and 10 m). We used 

Earth Resources Data Analysis System (ERDAS IMAGINE) 2013 to extract pixel values along the 

semi-variogram transects and GS+ geostatistical software for semi-variance calculation. 

2.3.3. Interpretation of Semi-Variograms 

In order to interpret a semi-variogram, it is necessary to understand the term and characteristics 

associated to the semi-variogram (Figure 3). The range (a) of semi-variograms is a distance at which 
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samples become independent, and it is controlled by the size of dominant objects in an image. 

The height of the sill (s), where the semi-variogram levels off, is considered proportional to the density 

of objects and scene-scale level of variance. The form of semi-variograms is controlled by the pattern 

and distribution of objects in an image [18,19,45,49]. These descriptors of semi-variograms are usually 

used together to interpret the appropriate spatial resolution for mangrove elements.  

Figure 3. An example of variogram with descriptors, and the definition of terms [24,43]. 

 

Term Symbol Definition 

Semi-

variance 
γ(h) 

Half the averaged variances between pixels at 

distance h apart. 

Support γ 
Area, shape and orientation of space 

represented by each sample datum. 

Lag h 
Distance (and direction in two or more 

dimensions) between sampling pairs. 

Sill s Maximum value of γ(h) model. 

Range a 

Point on x axis where γ(h) model reaches 

maximum. Places closer than the range are 

related statistically, places further apart are not. 

Nugget 

variance 
co 

Point where γ(h) model intercepts the y axis. 

Represents a component of the variation that is 

spatially uncorrelated. 

Structured 

variance 
c Sill minus nugget variance. 

Gradient m 
The slope for γ(h) model with a linear 

component. 

The advantage of using semi-variograms in remote sensing is its ability to relate its descriptors to 

the spatial characteristics of the scene [50]. The range and sill were extracted from all semi-variograms 

of transects located parallel and perpendicular to the coastline using the green, red-edge, NIR1, and 

NDVI bands. Six different image pixel sizes were evaluated to detect the scale at which certain 

features within each mangrove zone occurred. The range provides a measure of the size of the 

elements or features in the mangrove environment in the image and has been suggested as a useful 

indicator for selecting the optimal spatial resolution for discriminating features embedded in the  

semi-variogram [19,42]. Visual inspection of the field data and visual interpretation of the image were 

conducted in order to relate the semi-variogram range values to the mangrove vegetation structure 

dimensions (foliage clumping, canopy gap and tree crown size, vegetation formation, or community 

and vegetation cover type). This information provides guidance for developing a scheme in selecting 

the optimum image spatial resolution to extract specific mangrove feature, and serve as a basis for an 

inversion mapping approach. A total of over 1,500 semi-variograms were analyzed in this study. 

The findings from the semi-variogram analysis revealed the spatial characteristics of mangrove 

vegetation features and the optimum pixel sizes to map these features.  

  



Remote Sens. 2014, 6 993 

 

2.3.4. Application of the Analysis Results 

To test the applicability and validate the results, we used object-based image analysis (OBIA) 

applied to the original and resampled WorldView-2 images with the segmentation and classification 

being driven by parameters obtained from the semi-variogram analysis. OBIA offers some 

fundamental advantages in the context of this study, including: (1) image objects can be created at 

multiple, yet specific, hierarchical spatial scales (e.g., tree community consists of several single tree 

canopies) [51,52], (2) numerous attributes can be obtained from image objects, such as object’s 

statistics, geometry and context, (3) better mimics human perception of real-world objects [53], 

and (4) image objects reduce the salt-and-pepper effect in pixel-based classifications [54].  

We applied image segmentation and classification to the original and resampled WorldView-2 

images to evaluate the applicability of the semi-variogram results. The segmentation and classification 

routines were carried out using eCognition Developer software v. 8.7.0. A series of scale parameters 

from 5 to 100 were tested for the mapping of mangrove features with a weight of 5 applied to the 

green, red, red-edge, and NIR1 bands to enhance the influence of bands that are sensitive to vegetation 

reflectance in the segmentation. We used a trial-and-error approach and visual inspection of the 

segmentation results with the help of a very-high-spatial resolution aerial photograph (7.5 cm pixel size) 

to determine the mangrove features that can be depicted from different scale parameters and image 

pixel sizes. 

A supervised rule-based classification was applied to implement the optimum pixel size scheme for 

mangrove feature mapping based on the WorldView-2 images. The rule sets were developed using the 

objects’ spectral information, geometry of the objects, and contextual hierarchy of the classes. The first 

hierarchy layer was used to separate mangrove and non-mangrove features, the second layer was for 

dividing the mangrove area into trees and gaps (and shadows), and the third layer, was used for 

classification of objects within the mangrove tree class. These hierarchical layers were applied to all 

image pixel sizes being examined. The result of the mapping was used to evaluate the image selection 

scheme and inversion mapping approach. 

3. Results and Discussion 

3.1. Relation of Semi-Variograms to Mangrove Vegetation Structure Properties 

Visual characteristics of the images demonstrate the gradual loss of mangrove spatial structure 

detail by the increasing pixel sizes (Figure 4). The descriptive statistics for each image shows the 

divergence between original (0.5 and 2 m) and resampled image (1, 4, 8, and 10 m). While the mean 

values of the bands in the resampled image exhibit some random variations, the coefficient of variance 

(%CV) decreased with decreasing spatial resolution relative to the original images. The coastal and 

yellow bands for the first resampling group (from 0.5 to 1 m) and all bands for the second resampling 

group (from 2 to 10 m) also follow this pattern. Figure 4 shows that an image with lower spatial 

resolution has lower data variability and therefore contains less information compared to a higher 

spatial resolution image. 
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Figure 4. Subsets of mangrove on Whyte Island at pixel sizes of 0.5, 1, 2, 4, 8, and 10 m 

displayed with a band combination of R:7, G:5, B:3, and their associated descriptive statistics. 

The original and 

resampled 

WorldView-2 

images. 

 

Image statistics Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV 

W
V

-2
 i

m
ag

e 
b

an
d

s 

Coastal 0.0605 0.64 0.0605 0.63 0.0628 0.53 0.0628 0.52 0.0625 0.51 0.0628 0.50 

Blue 0.0684 0.68 0.0683 0.68 0.0710 0.58 0.0710 0.56 0.0707 0.54 0.0710 0.53 

Green 0.0876 0.59 0.0875 0.59 0.0908 0.51 0.0908 0.50 0.0904 0.48 0.0909 0.47 

Yellow 0.0879 0.67 0.0879 0.66 0.0915 0.56 0.0914 0.55 0.0911 0.53 0.0915 0.52 

Red 0.0778 0.79 0.0778 0.79 0.0814 0.66 0.0814 0.65 0.0811 0.63 0.0815 0.62 

Red-edge 0.1429 0.50 0.1428 0.50 0.1479 0.54 0.1478 0.53 0.1472 0.52 0.1482 0.51 

NIR1 0.2109 0.60 0.2108 0.60 0.2172 0.67 0.2171 0.66 0.2162 0.65 0.2179 0.63 

NIR2 0.1909 0.63 0.1908 0.63 0.1967 0.70 0.1966 0.69 0.1958 0.67 0.1973 0.66 

NDVI 0.3617 1.11 0.3611 1.10 0.3029 1.34 0.3043 1.33 0.3055 1.32 0.3104 1.29 

Note: The mean image spectral reflectance and NDVI values were represented at a scale of 0–1, %CV: 

coefficient of variance 

The spatial structural information of mangrove elements (or features) detectable from the original 

and resampled WorldView-2 images was related to the semi-variogram descriptors (range, sill, and 

form). Figure 5 (preliminary published in [48]) shows the representative semi-variogram plot of the 

near infrared1 (NIR1) image band at six different pixel sizes, and the average mangrove feature sizes 

measured from field-work and the aerial photograph. It reveals similar results to those presented in 

other studies examining the effects of changes in image pixel size on image information 

content [19,24,29,55,56]. Specifically, there is a gradual loss of information detail with the increasing 

pixel size (Figure 4 and 5). The forms of semi-variogram changes with the varying pixel sizes describe 

the effect of data regularization on the spatial heterogeneity component. The decreasing height of the 

sill characterizes the loss of spatial variability when the spatial resolution of the image decreases, 

which is also evident in the image statistics in Figure 4. 

At a pixel size of 0.5 m, the form of semi-variograms appears to be controlled by inter-canopy 

features including individual shrubs and tree crown, foliage clumping and smaller inter-canopy gaps. 

At a pixel size of 1 m, the individual shrub and tree crown are still distinguishable, but the detailed 

foliage clumping and inter-canopy gaps become more difficult to identify. Single shrub crowns and 

foliage clumping identified from the image and field data correspond to the semi-variogram lag distance 

of 1.5 m, and the inter-canopy gaps at 2 m. Pixel sizes 0.5 and 1 m had similar semi-variogram forms, 

meaning the variation of information of the pattern and distribution of mangrove features within these 
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sizes are comparable, but they have different sill height which is attributed to the different level of 

pixel value variance in the image scene (see image statistics in Figure 4). Although these two pixel sizes 

offer similar capability, detailed information on structural properties and sharper visual image appearance 

increases the likelihood of correctly identifying mangrove inter-canopy features. 

Figure 5. Subset of NIR1 semi-variogram showing the mangrove features responsible for 

the semi-variogram range and form up to a 50 m lag distance. 

 

The range of the semi-variograms for pixel sizes 2 m and smaller are all at 5 m, which is 

approximately equal to the average diameter of single mangrove tree crowns. This indicates that single 

mangrove tree crowns may be distinguished at a maximum pixel size of 2 m. At a pixel size of 4 m the 

average single tree crown is no longer apparent, although some individual larger canopies of mangrove 

tree and gaps that are more than 10 m in diameter can still be identified. Based on field observations, it 

is likely that the range of about 8 to 10 m corresponds to groups of two tree crowns, and these can be 

identified at pixel sizes of 4 m. The semi-variogram range of pixel sizes of 8 and 10 m are 

approximately 20 and 30 m, respectively, which correspond to the average size of mangrove 

vegetation formation or community at 23 m and larger mangrove cover types at 30 m. At a pixel size 

of 4 m and larger, the canopy-related information is gradually lost. They are more appropriate for 

mapping larger mangrove communities, mangrove patches, and separating mangroves from  

non-mangrove cover types. 

Overall, there are noticeable patterns of semi-variogram peaks and troughs with different sill 

heights across varying pixel sizes. According to Figure 5, the variation of structural information within 

mangrove stands can only be preserved by pixel sizes of 0.5 to 2 m, where the semi-variogram 

contains periodic peaks and troughs along the graph. On the other hand, from pixel sizes of 4 to 10 m, 

these variations are lost and result in relatively flat graphs with minimum or no information on within 

mangrove structural properties. This finding indicates that pixel sizes of 2 m and smaller are 
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appropriate for mapping small size features and internal variation of mangrove canopy (such as single 

shrub crown, foliage clumping, canopy gaps, and average tree crown), whereas pixel sizes of 4 m and 

larger are more appropriate to map larger mangrove features (such as groups of tree crowns, vegetation 

formations or communities, and cover type). 

3.2. Relation of Semi-Variograms to Mangrove Zone Features 

Variation in spatial structural information between mangrove zones, i.e., areas with consistent 

structure and composition parallel to the coastline, were examined using transects located parallel to 

the coastline at varying distances from the three Moreton Bay sites. The semi-variograms were derived 

from transects of 1000 m in length along the mangrove zonation which were located at distances of 25, 

75, 125, and 175 m from the edge of outer mangrove stands. These distances were selected to be as 

representative as possible of mangrove zonation to depict the within mangrove zonation structural 

properties. Among the three transect locations; two of them produced similar semi-variograms. 

Therefore, only two of the transect locations are discussed here, which are Fisherman Island and 

Boondall wetlands (Figure 6). 

The transect at 125 m from the coastline on Fisherman Island had high sill values and was the 

second highest for all of the bands. It corresponds to a low-closed forest mangrove formation where 

there are mixed stems of Avicennia marina trees (I4a) with high canopy cover and some canopy gaps. 

For the Boondall wetlands, this transect distance was at the third highest level of the semivariogram 

sill height. The mixed-stem low-closed forest (I4a) formation in Boondall has a lower canopy cover 

and more canopy gaps, making it appear to have low contrast in the image. Finally, transects located at 

a distance of 175 m from the coastline had the lowest semi-variogram sill values and this pattern is 

noticeable for all bands and all locations. These transects cover the open scrub Avicennia marina zone 

with low density of canopy cover and uniform canopy layers. Some gaps with Sarcocornia 

quinqueflora, water or soil are also frequently found in this zone, which may contribute to decreasing 

the reflectance intensity of the pixels. 

Semi-variograms located along the mangrove zones revealed different spatial structural 

characteristics of mangrove features within each zonation. As shown in Figure 7, the average range of 

semi-variograms of all evaluated bands for transects located along the mangrove zonation at the 

Moreton Bay sites exhibit different patterns. The average range values of open scrub formation (S3) 

were higher for all of the image bands (2.7 to 8.1 m) compared to the other formations, where low-closed 

forest1 (I4a) had the lowest average range value (2.5 to 5.2 m), and low-closed forest2 (I4b) together 

with closed forest (M4) had a similar range value (3.1 to 6.6 and 2.6 to 6.6 m, respectively). The high 

average range values on the open scrub formation (S3) were attributed to the large variation in the size 

of Avicennia marina scrub patches interleaved with large gaps of ground or water that are frequently 

found in this zone (see image on Figure 7). Conversely, the low average range values of the low-closed 

forest1 (I4a) were caused by the foliage clumping and the narrow canopy gaps (1–2 m) between 

individual tree crowns (approximately 5 m in diameter) that dominate this zone. 
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Figure 6. Subset of pan-sharpened image of (a) Fisherman Island and (b) Boondall 

wetlands showing the transects along the mangrove zonations, and semi-variograms 

created from transects along the mangrove zonation at distances of 25, 75, 125, and 175 m 

from the coastline using the 0.5 m pan-sharpened WorldView-2 image. 

 

 
  

(a) (b) 
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Figure 7. Mean semi-variogram range values sampled at 0.5 m pixel size for the green,  

red-edge, NIR1, and NDVI bands, based on four transects located at 175 m (S3), 125 m (I4a), 

75 m (I4b), and 25 m (M4) from the coastline of Moreton Bay mangroves. 

 

 

    
S3, open scrub, > 2 m,  

multi-stem 

I4a, low-closed forest,  

5–10 m, multi/single stem 

I4b, low-closed forest,  

5–10 m, single stem 

M4, closed forest,  

10–30 m, multi/single stem 

3.3. Optimum Pixel Size for Mangrove Mapping 

Several transects were established along the mangrove zonation at the Moreton Bay sites to create 

semi-variograms to depict the variation of spatial size of the structural features of mangroves. The 

information on the characteristics of spatial structure of mangrove features obtained from semi-variogram 

interpretation and analysis provides the basis for establishing the relationship between mangrove 

feature sizes and optimum spatial resolution (i.e., image pixel size) to map these features. According to 

techniques used in the previous semi-variogram analyses, seven mangrove vegetation structures were 

apparent in the study area and detectable from the WorldView-2 image data. These included single 

shrub crown, small foliage clumping within canopy or intra-canopy, smaller canopy gaps, average 

single tree crown, double tree crown or larger gaps, vegetation structural formation/community, and 

vegetation cover type. By integrating semi-variogram interpretation results at specific pixel sizes along 

mangrove zonations, with field data and image interpretation, it was apparent that each of these 
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mangrove features resided within certain range distances and can only be detected at specific image 

pixel sizes. 

Figure 8 illustrates the relationships between the range of mangrove features, the optimum pixel 

size, and the most appropriate spectral bands able to identify and map these features. The mangrove 

structural features were plotted on the y axis from the largest scale at the bottom to the smallest scale at 

the top of the axis. Seven plot boxes inside the graph depict where the mangrove features on the y axis 

reside along the feature range distance (bottom x axis); and the downward bar charts from the x axis at 

the top illustrate the influence of the associated pixel size on the plot boxes of mangrove features. The 

most appropriate spectral bands were placed as dot point indicators beside the associated mangrove 

feature. For example, the average single tree crown has semi-variogram range values between 4 and 8 

m. This feature can be identified using image pixel sizes of 0.5, 1, and 2 m, but is unable to be 

identified at a pixel size of 4 m or larger. Therefore, in this case, an image with a pixel size of 2 m is 

the optimum option to map the average mangrove tree crown as it is the largest pixel size able to 

identify individual tree crowns, and green, red-edge, and NDVI bands will be the most suitable bands 

for discriminating this feature. For mapping routine purposes, using an image datasets with a smaller 

pixel size will increase the cost, both for resources and processing, and may produce the result that is 

similar to a product derived from the optimum pixel size. 

Figure 8. Relationship between mangrove features, feature ranges, optimum pixel sizes, 

and the most sensitive image bands to map mangrove features. 

 

3.4. Application of the Optimum Pixel Size Scheme 

The pattern of mangrove feature information obtained from different scale parameters applied to 

different image pixel sizes was interpreted from the image segmentation results (Figure 9). 

In accordance to the results of the semi-variogram analysis; the lower value of the scale parameter or 

the smaller pixel size, the more mangrove information could be extracted from the image. According 
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to the interpretation results, single shrub crowns could only be recognised at a pixel size of 0.5 m with 

the segmentation scale parameter ≤30, and at a pixel size of 1 m with the scale parameter ≤10. At a 

pixel size of 2 m, the smallest obtainable mangrove objects were canopy gaps and single tree crowns 

with a segmentation scale parameter ≤10 and 20–30, respectively. At a scale parameter ≥40 the 

segment size was too large and failed to identify single tree crowns. Most of the pixel sizes ≥2 m could 

only differentiate objects larger than the average size of single tree crowns, including double/multiple 

tree crowns, larger gaps, vegetation formation and community, and vegetation cover types; with the 

exception of scale parameters ≤10 at a pixel size 4 m, which still allowed discrimination of single tree 

crowns. In general, there was an obvious relationship between mangrove information detail and the 

pixel and segmentation scale parameter size, where smaller pixel sizes or segmentation scale 

parameters will allow more detailed mapping of mangrove features. 

Figure 9. Graph of mangrove features detectable at a number of scale parameters derived 

from different WorldView-2 image pixel sizes. 

 

We also identified the size of dominant objects able to be delineated in the segmentation process 

from six different pixel sizes and related the result with the measured feature dimension in the field. 

The dominant segment sizes and the corresponding pixel sizes were found to correspond well to 

the result of the optimum pixel sizes from the semi-variogram analysis (Columns c and f in Table 3). 

The result indicated that the theoretical finding of the optimum pixel sizes from the SV is empirically 

proven on the image dataset through image segmentation. 
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Table 3. Optimum pixel sizes interpreted from semi-variogram and image segmentation 

results. 

Mangrove Features 

Average 

Features 

Size (m) in 

the Field 

Optimum 

Image Pixel 

Size (m) 

from SV 

OBIA Segmentation 

Dominant 

Object 

Size (m
2
) 

Estimated 

Feature 

Dimension 

(m) 

Optimum 

Image Pixel 

Size (m) 

from OBIA 

(a) (b) (c) (d) (e) (f) 

Single shrub crown 1–2 0.5 1.5 1.2 0.5 

Canopy gaps 2 1 4 2 1 

Single tree crown 4 2 16 4 2 

Double tree crowns/ larger gaps 8 4 48 6.9 4 

Vegetation formation/ community 20–25 8 128 11.3 8 

Vegetation cover type 30–40 10 700 26.4 10 

The classification results showed that the use of each image pixel size enabled the discrimination of 

the smallest mangrove object according to the previously developed optimum pixel size scheme 

(Figure 8). Figure 10 shows some selected examples of the classification results applied to the image at 

pixel sizes of 0.5, 2, and 8 m to depict information of shrub crown, single tree crown, and mangrove 

formation, respectively. We used a very-high-spatial resolution aerial photograph as a reference to 

assess and evaluate the quality of mangrove feature mapping. This was used as there was no existing 

map containing mangrove vegetation features for the study area, and the aerial photograph 

interpretation was accepted to be correct (due to the features evident at very high resolution) without 

any form of accuracy assessment [57]. 

Figure 10. Example of mangrove features segmented and classified (green polygons) from 

images with different image pixel sizes and scale parameters (SP).  
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Figure 10. Cont. 
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At a pixel size of 0.5 m individual shrub crowns were discriminated from other features, but the 

classification was unable to identify each single shrub crown in groups of shrub (Figure 10a) due to the 

short distance between the crowns and the shape similarity. Single stands of tree crowns were well 

identified at pixel size of 2 m, although the segments were blocky due to the bigger pixel size (Figure 10b). 

Individual trees in the mangrove forest were difficult to distinguish because of their closed canopy and 

similarity to the neighbouring objects (i.e., tree crowns). Four mangrove formations found in the study 

area were clearly separated at a pixel size of 8 m (Figure 10c), with some isolated segments found 

within the formation. According to the qualitative segmentation assessment, the optimum pixel size 

scheme worked well when applied to the image datasets used in this study. As the segmentation and 

classification example was purely used as a proof of concept, further improvements to the 

segmentation and classification process are still possible to improve the mapping accuracy and 

repeatability across other areas. 

4. Conclusions and Future Research 

This study showed that scale-specific, ecologically relevant information on mangroves can be 

detected using experimental semi-variogram analysis. This approach indicated the size of dominant 

mangrove features able to be identified from a specific pixel size and the optimum spectral bands to 

use to detect and map these features. The results show that there was a gradual loss in mangrove 

vegetation structural information, as indicated by mangrove features measured, with increasing pixel 

size. When applied to the original and resampled WorldView-2 images, we found that a pixel size ≤2 m 

was suitable for mapping canopy and inter-canopy related features within mangrove objects (such as 

shrub crown, canopy gaps, single tree crown). A pixel size of ≥4 m was more appropriate for mapping 

mangrove vegetation formation, communities and larger mangrove features. The green and red-edge 

bands were optimum for discriminating smaller sized mangrove features (<8 m), such as single shrub 

crown or foliage clumping, canopy gaps, and single tree crown. The near infrared1 band was more 

suitable for identifying feature ≥8 m (e.g., double tree crown or larger gaps), and the NDVI image was 

suitable for mapping all targeted features. 

The findings of this study provide a basis for an inversion approach to mangrove feature mapping 

using high-spatial resolution image datasets. The mapping application results demonstrated that the 

optimum pixel size scheme from the semi-variogram analysis was effectively applied through image 

(c) 
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segmentation and classification using object-based image analysis. The optimum pixel analysis result 

from the image segmentation interpretation was highly correlated with the semi-variogram results, and 

the classification result identified the smallest features that could be discriminated at the corresponding 

pixel size. 

The results of this work were limited to the study site in Moreton Bay, Australia, with sub-tropical 

mangroves. For future research, the application of the experimental semi-variogram method to other 

mangrove environments is necessary to assess the consistency of the method. In terms of the mapping 

application, further development of object-based classification rule sets is essential for improving the 

detection of multi-scale mangrove features and determining the transferability and general applicability 

of the findings.  
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